Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-6. Singular Value Decomposition

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Singular Value Decomposition

Singular Value Decomposition

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$.

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $\mathrm{m} \times \mathrm{n}$ matrix.

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of A ${ }^{\mathrm{T}} \mathrm{A}$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $\mathrm{m} \times \mathrm{n}$ matrix.
Given an $\mathrm{m} \times \mathrm{n}$ matrix A , we will see how to express A as a product

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

where

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $\mathrm{m} \times \mathrm{n}$ matrix.
Given an $\mathrm{m} \times \mathrm{n}$ matrix A , we will see how to express A as a product

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

where

- U is an $\mathrm{m} \times \mathrm{m}$ orthogonal matrix whose columns are eigenvectors of AA^{T}.

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $\mathrm{m} \times \mathrm{n}$ matrix.
Given an $\mathrm{m} \times \mathrm{n}$ matrix A , we will see how to express A as a product

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

where

- U is an $\mathrm{m} \times \mathrm{m}$ orthogonal matrix whose columns are eigenvectors of AA^{T}.
- V is an $\mathrm{n} \times \mathrm{n}$ orthogonal matrix whose columns are eigenvectors of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$.

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $\mathrm{m} \times \mathrm{n}$ matrix.
Given an $\mathrm{m} \times \mathrm{n}$ matrix A, we will see how to express A as a product

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}
$$

where

- U is an $\mathrm{m} \times \mathrm{m}$ orthogonal matrix whose columns are eigenvectors of AA^{T}.
-V is an $\mathrm{n} \times \mathrm{n}$ orthogonal matrix whose columns are eigenvectors of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$.
- Σ is an $\mathrm{m} \times \mathrm{n}$ matrix whose only nonzero values lie on its main diagonal, and are the square roots of the eigenvalues of both AA^{T} and $A^{T} A$.

Theorem

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ and AA^{T} have the same nonzero eigenvalues.

Theorem

If A is an $\mathrm{m} \times \mathrm{n}$ matrix, then $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ and AA^{T} have the same nonzero eigenvalues.

Proof.
Suppose A is an $\mathrm{m} \times \mathrm{n}$ matrix, and suppose that λ is a nonzero eigenvalue of $A^{T} A$. Then there exists a nonzero vector $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$ such that

$$
\begin{equation*}
\left(\mathrm{A}^{\mathrm{T}} \mathrm{~A}\right) \overrightarrow{\mathrm{x}}=\lambda \overrightarrow{\mathrm{x}} \tag{1}
\end{equation*}
$$

Multiplying both sides of this equation by A:

$$
\begin{aligned}
\mathrm{A}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{~A}\right) \overrightarrow{\mathrm{x}} & =\mathrm{A} \lambda \overrightarrow{\mathrm{x}} \\
\left(\mathrm{AA}^{\mathrm{T}}\right)(\mathrm{A} \overrightarrow{\mathrm{x}}) & =\lambda(\mathrm{A} \overrightarrow{\mathrm{x}}) .
\end{aligned}
$$

Since $\lambda \neq 0$ and $\vec{x} \neq \overrightarrow{0}_{n}, \lambda \vec{x} \neq \overrightarrow{0}_{n}$, and thus by equation (1), $\left(A^{T} A\right) \vec{x} \neq \overrightarrow{0}_{n}$; thus $A^{T}(A \vec{x}) \neq \overrightarrow{0}_{n}$, implying that $A \vec{x} \neq \overrightarrow{0}_{m}$.

Therefore $A \vec{x}$ is an eigenvector of $A A^{T}$ corresponding to eigenvalue λ. An analogous argument can be used to show that every nonzero eigenvalue of AA^{T} is an eigenvalue of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$, thus completing the proof.

Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Examples

Examples

Example
Let $\mathbf{A}=\left[\begin{array}{rrr}1 & -1 & 3 \\ 3 & 1 & 1\end{array}\right]$. Then

$$
\begin{aligned}
& \mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{rrr}
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 3 \\
-1 & 1 \\
3 & 1
\end{array}\right]=\left[\begin{array}{rr}
11 & 5 \\
5 & 11
\end{array}\right] . \\
& A^{T} A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
10 & 2 & 6 \\
2 & 2 & -2 \\
6 & -2 & 10
\end{array}\right] .
\end{aligned}
$$

Example (continued)

Since $A A^{T}$ is 2×2 while $A^{T} A$ is 3×3, and $A A^{T}$ and $A^{T} A$ have the same nonzero eigenvalues, compute $\mathrm{c}_{\mathrm{AA}^{\mathrm{T}}}(\mathrm{x})$ (because it's easier to compute than $\left.\mathrm{c}_{\mathrm{A}^{\mathrm{T}}} \mathrm{A}^{(\mathrm{x}}\right)$).

$$
\begin{aligned}
\mathrm{c}_{\mathrm{AA}^{\mathrm{T}}}(\mathrm{x}) & =\operatorname{det}\left(\mathrm{xI}-\mathrm{AA}^{\mathrm{T}}\right)=\left|\begin{array}{cc}
\mathrm{x}-11 & -5 \\
-5 & \mathrm{x}-11
\end{array}\right| \\
& =(\mathrm{x}-11)^{2}-25 \\
& =\mathrm{x}^{2}-22 \mathrm{x}+121-25 \\
& =\mathrm{x}^{2}-22 \mathrm{x}+96 \\
& =(\mathrm{x}-16)(\mathrm{x}-6)
\end{aligned}
$$

Therefore, the eigenvalues of AA^{T} are $\lambda_{1}=16$ and $\lambda_{2}=6$.

Example (continued)

The eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ are $\lambda_{1}=16, \lambda_{2}=6$, and $\lambda_{3}=0$, and the singular values of A are $\sigma_{1}=\sqrt{16}=4$ and $\sigma_{2}=\sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).

Example (continued)

The eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ are $\lambda_{1}=16, \lambda_{2}=6$, and $\lambda_{3}=0$, and the singular values of A are $\sigma_{1}=\sqrt{16}=4$ and $\sigma_{2}=\sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).
To find the matrix V, find eigenvectors for $A^{T} A$. Since the eigenvalues of AA^{T} are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.

Example (continued)

The eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ are $\lambda_{1}=16, \lambda_{2}=6$, and $\lambda_{3}=0$, and the singular values of A are $\sigma_{1}=\sqrt{16}=4$ and $\sigma_{2}=\sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).

To find the matrix V, find eigenvectors for $A^{T} A$. Since the eigenvalues of AA^{T} are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.

$$
\begin{aligned}
& \lambda_{1}=16: \text { solve }\left(16 \mathrm{I}-\mathrm{A}^{\mathrm{T}} \mathrm{~A}\right) \vec{y}_{1}=\overrightarrow{0} . \\
& {\left[\begin{array}{rrr|r}
6 & -2 & -6 & 0 \\
-2 & 14 & 2 & 0 \\
-6 & 2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text {, so } \vec{y}_{1}=\left[\begin{array}{l}
\mathrm{t} \\
0 \\
\mathrm{t}
\end{array}\right]=\mathrm{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathrm{t} \in \mathbb{R} .}
\end{aligned}
$$

Example (continued)

The eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ are $\lambda_{1}=16, \lambda_{2}=6$, and $\lambda_{3}=0$, and the singular values of A are $\sigma_{1}=\sqrt{16}=4$ and $\sigma_{2}=\sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).

To find the matrix V, find eigenvectors for $A^{T} A$. Since the eigenvalues of AA^{T} are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.

$$
\lambda_{1}=16: \text { solve }\left(16 \mathrm{I}-\mathrm{A}^{\mathrm{T}} \mathrm{~A}\right) \overrightarrow{\mathrm{y}}_{1}=\overrightarrow{0}
$$

$$
\left[\begin{array}{rrr|r}
6 & -2 & -6 & 0 \\
-2 & 14 & 2 & 0 \\
-6 & 2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \text { so } \vec{y}_{1}=\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]=\mathrm{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathrm{t} \in \mathbb{R} .
$$

$\lambda_{2}=6:$ solve $\left(6 I-A^{T} A\right) \vec{y}_{2}=\overrightarrow{0}$.

$$
\left[\begin{array}{rrr|r}
-4 & -2 & -6 & 0 \\
-2 & 4 & 2 & 0 \\
-6 & 2 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \text { so } \vec{y}_{2}=\left[\begin{array}{r}
-s \\
-s \\
\mathrm{~s}
\end{array}\right]=\mathrm{s}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right], \mathrm{s} \in \mathbb{R} .
$$

Example (continued)
$\lambda_{3}=0$: solve $\left(-\mathrm{A}^{\mathrm{T}} \mathrm{A}\right) \vec{y}_{3}=\overrightarrow{0}$.

$$
\left[\begin{array}{rrr|r}
-10 & -2 & -6 & 0 \\
-2 & -2 & 2 & 0 \\
-6 & 2 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \text { so } \vec{y}_{3}=\left[\begin{array}{r}
-\mathrm{r} \\
2 \mathrm{r} \\
\mathrm{r}
\end{array}\right]=\mathrm{r}\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], \mathrm{r} \in \mathbb{R} .
$$

Example (continued)
$\lambda_{3}=0$: solve $\left(-\mathrm{A}^{\mathrm{T}} \mathrm{A}\right) \overrightarrow{\mathrm{y}}_{3}=\overrightarrow{0}$.

$$
\left[\begin{array}{rrr|r}
-10 & -2 & -6 & 0 \\
-2 & -2 & 2 & 0 \\
-6 & 2 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \text { so } \vec{y}_{3}=\left[\begin{array}{r}
-\mathrm{r} \\
2 \mathrm{r} \\
\mathrm{r}
\end{array}\right]=\mathrm{r}\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], \mathrm{r} \in \mathbb{R} .
$$

Let

$$
\overrightarrow{\mathrm{v}}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \overrightarrow{\mathrm{v}}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right], \overrightarrow{\mathrm{v}}_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]
$$

Then

$$
\mathrm{V}=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt{3} & -\sqrt{2} & -1 \\
0 & -\sqrt{2} & 2 \\
\sqrt{3} & \sqrt{2} & 1
\end{array}\right] .
$$

Example (continued)

$\lambda_{3}=0:$ solve $\left(-A^{T} A\right) \vec{y}_{3}=\overrightarrow{0}$.

$$
\left[\begin{array}{rrr|r}
-10 & -2 & -6 & 0 \\
-2 & -2 & 2 & 0 \\
-6 & 2 & -10 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \text { so } \vec{y}_{3}=\left[\begin{array}{r}
-r \\
2 r \\
r
\end{array}\right]=r\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right], r \in \mathbb{R} .
$$

Let

$$
\overrightarrow{\mathrm{v}}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \overrightarrow{\mathrm{v}}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right], \overrightarrow{\mathrm{v}}_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right] .
$$

Then

$$
\mathrm{V}=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt{3} & -\sqrt{2} & -1 \\
0 & -\sqrt{2} & 2 \\
\sqrt{3} & \sqrt{2} & 1
\end{array}\right] .
$$

Also,

$$
\Sigma=\left[\begin{array}{rrr}
4 & 0 & 0 \\
0 & \sqrt{6} & 0
\end{array}\right]
$$

and we use $\mathrm{A}, \mathrm{V}^{\mathrm{T}}$, and Σ to find U .

Example (continued)

Since V is orthogonal and $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$, it follows that $\mathrm{AV}=\mathrm{U} \Sigma$. Let $\mathrm{V}=\left[\begin{array}{lll}\overrightarrow{\mathrm{v}}_{1} & \overrightarrow{\mathrm{v}}_{2} & \overrightarrow{\mathrm{v}}_{3}\end{array}\right]$, and let $\mathrm{U}=\left[\begin{array}{cc}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2}\end{array}\right]$, where $\overrightarrow{\mathrm{u}}_{1}$ and $\overrightarrow{\mathrm{u}}_{2}$ are the two columns of U .

Example (continued)

Since V is orthogonal and $A=U \Sigma V^{T}$, it follows that $A V=U \Sigma$. Let $\mathrm{V}=\left[\begin{array}{lll}\overrightarrow{\mathrm{v}}_{1} & \overrightarrow{\mathrm{v}}_{2} & \overrightarrow{\mathrm{v}}_{3}\end{array}\right]$, and let $\mathrm{U}=\left[\begin{array}{cc}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2}\end{array}\right]$, where $\overrightarrow{\mathrm{u}}_{1}$ and $\overrightarrow{\mathrm{u}}_{2}$ are the two columns of U . Then we have

$$
\begin{aligned}
\mathrm{A}\left[\begin{array}{lll}
\overrightarrow{\mathrm{v}}_{1} & \overrightarrow{\mathrm{v}}_{2} & \overrightarrow{\mathrm{v}}_{3}
\end{array}\right] & =\left[\begin{array}{ll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2}
\end{array}\right] \Sigma \\
{\left[\begin{array}{lll}
\mathrm{A} \overrightarrow{\mathrm{v}}_{1} & \mathrm{~A} \overrightarrow{\mathrm{v}}_{2} & \mathrm{~A} \overrightarrow{\mathrm{v}}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
\sigma_{1} \overrightarrow{\mathrm{u}}_{1}+0 \overrightarrow{\mathrm{u}}_{2} & 0 \overrightarrow{\mathrm{u}}_{1}+\sigma_{2} \overrightarrow{\mathrm{u}}_{2} & 0 \overrightarrow{\mathrm{u}}_{1}+0 \overrightarrow{\mathrm{u}}_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\sigma_{1} \overrightarrow{\mathrm{u}}_{1} & \sigma_{2} \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{0}
\end{array}\right]
\end{aligned}
$$

which implies that $\mathrm{A} \overrightarrow{\mathrm{v}}_{1}=\sigma_{1} \overrightarrow{\mathrm{u}}_{1}=4 \overrightarrow{\mathrm{u}}_{1}$ and $\mathrm{A} \overrightarrow{\mathrm{v}}_{2}=\sigma_{2} \overrightarrow{\mathrm{u}}_{2}=\sqrt{6} \overrightarrow{\mathrm{u}}_{2}$.

Example (continued)

Since V is orthogonal and $A=U \Sigma V^{T}$, it follows that $A V=U \Sigma$. Let $\mathrm{V}=\left[\begin{array}{ccc}\overrightarrow{\mathrm{v}}_{1} & \overrightarrow{\mathrm{v}}_{2} & \overrightarrow{\mathrm{v}}_{3}\end{array}\right]$, and let $\mathrm{U}=\left[\begin{array}{cc}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2}\end{array}\right]$, where $\overrightarrow{\mathrm{u}}_{1}$ and $\overrightarrow{\mathrm{u}}_{2}$ are the two columns of U . Then we have

$$
\begin{aligned}
\mathrm{A}\left[\begin{array}{lll}
\overrightarrow{\mathrm{v}}_{1} & \overrightarrow{\mathrm{v}}_{2} & \overrightarrow{\mathrm{v}}_{3}
\end{array}\right] & =\left[\begin{array}{ll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2}
\end{array}\right] \Sigma \\
{\left[\begin{array}{lll}
\mathrm{A} \overrightarrow{\mathrm{v}}_{1} & \mathrm{~A} \overrightarrow{\mathrm{v}}_{2} & \mathrm{~A} \overrightarrow{\mathrm{v}}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
\sigma_{1} \overrightarrow{\mathrm{u}}_{1}+0 \overrightarrow{\mathrm{u}}_{2} & 0 \overrightarrow{\mathrm{u}}_{1}+\sigma_{2} \overrightarrow{\mathrm{u}}_{2} & 0 \overrightarrow{\mathrm{u}}_{1}+0 \overrightarrow{\mathrm{u}}_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\sigma_{1} \overrightarrow{\mathrm{u}}_{1} & \sigma_{2} \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{0}
\end{array}\right]
\end{aligned}
$$

which implies that $\mathrm{A} \overrightarrow{\mathrm{v}}_{1}=\sigma_{1} \overrightarrow{\mathrm{u}}_{1}=4 \overrightarrow{\mathrm{u}}_{1}$ and $\mathrm{A} \overrightarrow{\mathrm{v}}_{2}=\sigma_{2} \overrightarrow{\mathrm{u}}_{2}=\sqrt{6} \overrightarrow{\mathrm{u}}_{2}$. Thus,

$$
\overrightarrow{\mathrm{u}}_{1}=\frac{1}{4} \mathrm{~A} \overrightarrow{\mathrm{v}}_{1}=\frac{1}{4}\left[\begin{array}{rrr}
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\frac{1}{4 \sqrt{2}}\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

and

$$
\overrightarrow{\mathrm{u}}_{2}=\frac{1}{\sqrt{6}} \mathrm{~A} \overrightarrow{\mathrm{v}}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right] \frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]=\frac{1}{3 \sqrt{2}}\left[\begin{array}{r}
3 \\
-3
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Example (continued)
Therefore,

$$
\mathrm{U}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

and

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
1 & -1 & 3 \\
3 & 1 & 1
\end{array}\right] \\
& =\left(\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\right)\left[\begin{array}{rrr}
4 & 0 & 0 \\
0 & \sqrt{6} & 0
\end{array}\right]\left(\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt{3} & 0 & \sqrt{3} \\
-\sqrt{2} & -\sqrt{2} & \sqrt{2} \\
-1 & 2 & 1
\end{array}\right]\right) .
\end{aligned}
$$

Problem

Find an SVD for $\mathrm{A}=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$.

Problem

Find an SVD for $A=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$.

Solution
Since A is $3 \times 1, \mathrm{~A}^{\mathrm{T}} \mathrm{A}$ is a 1×1 matrix whose eigenvalues are easier to find than the eigenvalues of the 3×3 matrix AA^{T}.

$$
\mathrm{A}^{\mathrm{T}} \mathrm{~A}=\left[\begin{array}{lll}
-1 & 2 & 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]=[9]
$$

Thus $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ has eigenvalue $\lambda_{1}=9$, and the eigenvalues of AA^{T} are $\lambda_{1}=9$, $\lambda_{2}=0$, and $\lambda_{3}=0$. Furthermore, A has only one singular value, $\sigma_{1}=3$.

Problem

Find an SVD for $A=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$.

Solution

Since A is $3 \times 1, \mathrm{~A}^{\mathrm{T}} \mathrm{A}$ is a 1×1 matrix whose eigenvalues are easier to find than the eigenvalues of the 3×3 matrix AA^{T}.

$$
\mathrm{A}^{\mathrm{T}} \mathrm{~A}=\left[\begin{array}{lll}
-1 & 2 & 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]=[9]
$$

Thus $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ has eigenvalue $\lambda_{1}=9$, and the eigenvalues of AA^{T} are $\lambda_{1}=9$, $\lambda_{2}=0$, and $\lambda_{3}=0$. Furthermore, A has only one singular value, $\sigma_{1}=3$.

To find the matrix V , find an eigenvector for $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ and normalize it. In this case, finding a unit eigenvector is trivial: $\overrightarrow{\mathrm{v}}_{1}=[1]$, and

$$
\mathrm{V}=[1]
$$

Solution (continued)
Also, $\Sigma=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$, and we use $\mathrm{A}, \mathrm{V}^{\mathrm{T}}$, and Σ to find U.

Solution (continued)
Also, $\Sigma=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$, and we use $\mathrm{A}, \mathrm{V}^{\mathrm{T}}$, and Σ to find U.
Now $A V=U \Sigma$, with $V=\left[\begin{array}{c}\vec{v}_{1}\end{array}\right]$, and $U=\left[\begin{array}{lll}\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3}\end{array}\right]$, where $\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}$, and $\overrightarrow{\mathrm{u}}_{3}$ are the columns of U. Thus

$$
\left.\begin{array}{rl}
\mathrm{A}\left[\overrightarrow{\mathrm{v}}_{1}\right] & =\left[\begin{array}{lll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \overrightarrow{\mathrm{u}}_{3}
\end{array}\right] \Sigma \\
{\left[\mathrm{A} \overrightarrow{\mathrm{v}}_{1}\right]} & =\left[\sigma_{1} \overrightarrow{\mathrm{u}}_{1}+0 \overrightarrow{\mathrm{u}}_{2}+0 \overrightarrow{\mathrm{u}}_{3}\right.
\end{array}\right] .
$$

This gives us $\mathrm{A} \overrightarrow{\mathrm{v}}_{1}=\sigma_{1} \overrightarrow{\mathrm{u}}_{1}=3 \overrightarrow{\mathrm{u}}_{1}$, so

$$
\overrightarrow{\mathrm{u}}_{1}=\frac{1}{3} \mathrm{~A} \overrightarrow{\mathrm{v}}_{1}=\frac{1}{3}\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right][1]=\frac{1}{3}\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

Solution (continued)
The vectors $\overrightarrow{\mathrm{u}}_{2}$ and $\overrightarrow{\mathrm{u}}_{3}$ are eigenvectors of AA^{T} corresponding to the eigenvalue $\lambda_{2}=\lambda_{3}=0$. Instead of solving the system $\left(0 \mathrm{I}-\mathrm{AA}^{\mathrm{T}}\right) \overrightarrow{\mathrm{x}}=\overrightarrow{0}$ and then using the Gram-Schmidt orthogonalization algorithm on the resulting set of two basic eigenvectors, the following approach may be used.

Find vectors $\overrightarrow{\mathrm{u}}_{2}$ and $\overrightarrow{\mathrm{u}}_{3}$ by first extending $\left\{\overrightarrow{\mathrm{u}}_{1}\right\}$ to a basis of \mathbb{R}^{3}, then using the Gram-Schmidt algorithm to orthogonalize the basis, and finally normalizing the vectors.

Solution (continued)
The vectors $\overrightarrow{\mathrm{u}}_{2}$ and $\overrightarrow{\mathrm{u}}_{3}$ are eigenvectors of AA^{T} corresponding to the eigenvalue $\lambda_{2}=\lambda_{3}=0$. Instead of solving the system $\left(0 I-A^{T}\right) \vec{x}=\overrightarrow{0}$ and then using the Gram-Schmidt orthogonalization algorithm on the resulting set of two basic eigenvectors, the following approach may be used.

Find vectors $\overrightarrow{\mathrm{u}}_{2}$ and $\overrightarrow{\mathrm{u}}_{3}$ by first extending $\left\{\overrightarrow{\mathrm{u}}_{1}\right\}$ to a basis of \mathbb{R}^{3}, then using the Gram-Schmidt algorithm to orthogonalize the basis, and finally normalizing the vectors.
Starting with $\left\{3 \overrightarrow{\mathrm{u}}_{1}\right\}$ instead of $\left\{\overrightarrow{\mathrm{u}}_{1}\right\}$ makes the arithmetic a bit easier. It is easy to verify that

$$
\left\{\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

is a basis of \mathbb{R}^{3}. Set

$$
\overrightarrow{\mathrm{f}}_{1}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right], \overrightarrow{\mathrm{x}}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \overrightarrow{\mathrm{x}}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

and apply the Gram-Schmidt orthogonalization algorithm to $\left\{\vec{f}_{1}, \overrightarrow{\mathrm{x}}_{2}, \overrightarrow{\mathrm{x}}_{3}\right\}$.

Solution (continued)
This gives us

$$
\overrightarrow{\mathrm{f}}_{2}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{f}}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
$$

Solution (continued)
This gives us

$$
\overrightarrow{\mathrm{f}}_{2}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{f}}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]
$$

Therefore,

$$
\overrightarrow{\mathrm{u}}_{2}=\frac{1}{\sqrt{18}}\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right], \overrightarrow{\mathrm{u}}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]
$$

and

$$
\mathrm{U}=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{4}{\sqrt{18}} & 0 \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}} \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Solution (continued)
This gives us

$$
\overrightarrow{\mathrm{f}}_{2}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{f}}_{3}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
$$

Therefore,

$$
\overrightarrow{\mathrm{u}}_{2}=\frac{1}{\sqrt{18}}\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right], \overrightarrow{\mathrm{u}}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]
$$

and

$$
\mathrm{U}=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{4}{\sqrt{11}} & 0 \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}} \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Finally,

$$
\mathrm{A}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{3} & \frac{4}{\sqrt{18}} & 0 \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}} \\
\frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right][1] .
$$

Problem

Find a singular value decomposition of $\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right]$.

Problem

Find a singular value decomposition of $\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right]$.

Solution

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]\right)\left[\begin{array}{rr}
\sqrt{85} & 0 \\
0 & 0
\end{array}\right]\left(\frac{1}{\sqrt{17}}\left[\begin{array}{rr}
1 & -4 \\
4 & 1
\end{array}\right]\right) .
$$

Problem

Find a singular value decomposition of $\mathrm{A}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right]$.

Solution

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right]=\left(\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]\right)\left[\begin{array}{rr}
\sqrt{85} & 0 \\
0 & 0
\end{array}\right]\left(\frac{1}{\sqrt{17}}\left[\begin{array}{rr}
1 & -4 \\
4 & 1
\end{array}\right]\right)
$$

Remark

Since there is only one non-zero eigenvalue, $\overrightarrow{\mathrm{u}}_{2}$ (the second column of U) can not be found using the formula $\overrightarrow{\mathrm{u}}_{2}=\frac{1}{\sigma_{2}} \mathrm{~A} \overrightarrow{\mathrm{v}}_{2}$. However, $\overrightarrow{\mathrm{u}}_{2}$ can be chosen to be any unit vector orthogonal to $\overrightarrow{\mathrm{u}}_{1}$; in this case, $\overrightarrow{\mathrm{u}}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1\end{array}\right]$.

Problem

Find a singular value decomposition of $\mathrm{A}=\left[\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$.

Problem

Find a singular value decomposition of $\mathrm{A}=\left[\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$.

Solution

$$
\begin{gathered}
{\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]} \\
\left(\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]\right)\left[\begin{array}{rrr}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left(\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
1 & -2 & 1 \\
-\sqrt{3} & 0 & \sqrt{3} \\
\sqrt{2} & \sqrt{2} & \sqrt{2}
\end{array}\right]\right)
\end{gathered}
$$

Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Fundamental Subspaces

Full Singular Value Decomposition

Fundamental Subspaces

Full Singular Value Decomposition

Fundamental Subspaces

Singular Value Decomposition

Examples

Fundamental Subspaces

Applications

Applications

Applications

Example (Polar Decomposition)

$$
a+b i=\underbrace{\sqrt{a^{2}+b^{2}}}_{\text {radius }} \underbrace{e^{i \theta}}_{\text {rotation }}
$$

Similarly, any square matrix

$$
\mathrm{A}=\mathrm{U} \Sigma \mathrm{~V}^{\mathrm{T}}=\underbrace{\mathrm{U} \Sigma \mathrm{U}^{\mathrm{T}}}_{\text {nonneg. def. rotation }} \underbrace{\mathrm{UV} V^{\mathrm{T}}}
$$

Definition

A real $\mathrm{n} \times \mathrm{n}$ matrix G is nonnegative definite (or positive in the book) if it is symmetric and for all $\vec{x} \in \mathbb{R}^{n}$

$$
\overrightarrow{\mathrm{x}}^{\mathrm{T}} \mathrm{G} \overrightarrow{\mathrm{x}} \geq 0 .
$$

Example (Generalized inverse)

Example (Generalized inverse)

$$
\sqrt{\frac{A+}{A T}}
$$

Example (Generalized inverse)

$$
\begin{aligned}
& A=1 \\
& \|=A^{+}=\left(A^{\top} A^{-1} A^{\top}\right.
\end{aligned}
$$

Example (Image of unit ball under linear transform A)
Let $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ be the full SVD for an $\mathrm{m} \times \mathrm{n}$ matrix A . We will see how the unit ball will be mapped:

$$
\{\mathrm{A} \overrightarrow{\mathrm{x}} \mid\|\overrightarrow{\mathrm{x}}\| \leq 1\}
$$

Example (Image of unit ball under linear transform A)
Let $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ be the full SVD for an $\mathrm{m} \times \mathrm{n}$ matrix A . We will see how the unit ball will be mapped:

$$
\{A \vec{x} \mid\|\vec{x}\| \leq 1\}
$$

The linear map $\overrightarrow{\mathrm{y}}=\mathrm{A} \overrightarrow{\mathrm{x}}$ is trying to do the following things:

1. Rotate the n -vector $\overrightarrow{\mathrm{x}}$ by V^{T}
2. Stretch along axes by σ_{i} with $\sigma_{\mathrm{i}}=0$ for $\mathrm{i}>\operatorname{rank}(\mathrm{A})$
3. Zero-pad for tall matrix (i.e., $\mathrm{m}>\mathrm{n}$) or truncate for fat matrix (i.e., $\mathrm{m}<\mathrm{n}>$) to get m -vector
4. Rotate the m -vector by U^{T}

Example (Image of unit ball under linear transform A - continued)

Example (Image Compression)

"I think you should be more explicit here in step two."

Image is a A is a 300×300 matrix.

$$
\mathrm{A} \approx \sum_{\mathrm{i}=1}^{\mathrm{n}} \sigma_{\mathrm{i}} \overrightarrow{\mathrm{u}}_{\mathrm{i}} \overrightarrow{\mathrm{v}}_{\mathrm{i}}^{\mathrm{T}}
$$

Example (Image Compression)

Example (Image Compression)

Example (Image Compression)

Example (Image Compression)

